Minimally Invasive McKeown Esophagectomy

Masters of Minimally Invasive Thoracic Surgery
Orlando
September 20, 2014

Thomas A. D’Amico MD
Gary Hock Professor and Vice-Chair of Surgery
Section Chief, Thoracic Surgery, Duke University Medical Center
Medical Director, Duke Comprehensive Cancer Institute
Increasing Deaths from Esophagus Cancer in US

B. Esophageal adenocarcinoma

Males

Females

The Effect of a Multidisciplinary Thoracic Conference (MTC) on Treatment of Patients With Esophageal Carcinoma

<table>
<thead>
<tr>
<th>2001-2007</th>
<th>Before MTC (n=117)</th>
<th>MTC (n=138)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Staging Evaluation</td>
<td>67%</td>
<td>97%</td>
<td>0.0001</td>
</tr>
<tr>
<td>Mult-D evaluation prior to Tx</td>
<td>72%</td>
<td>98%</td>
<td>0.0001</td>
</tr>
<tr>
<td>NCCN Guidelines adherence</td>
<td>83%</td>
<td>98%</td>
<td>0.0001</td>
</tr>
<tr>
<td>Days from Dx to Tx (mean)</td>
<td>27</td>
<td>16</td>
<td>0.0001</td>
</tr>
</tbody>
</table>
Esophagogastrectomy: Standard Resections

- **Standard**
 - Ivor Lewis
 - 3-incision (McKeown)
 - Thoracoabdominal
 - Transhiatal

- **Minimally Invasive Esophagectomies (MIE)**
 - Ivor Lewis
 - McKeown
3-Incision (McKeown)

1. Thoracic esophageal mobilization; lymph node dissection; ligate thoracic duct (VATS or open)
2. Abdominal exploration; stomach mobilization; lymph node dissection; feeding jejunostomy
3. Left cervical incision for anastomosis

Advantages: less chance of local recurrence, anastomosis in neck easier to manage
Ivor Lewis

1. Abdominal exploration; stomach mobilization; lymph node dissection; feeding jejunostomy (laparoscopic or open)

2. Thoracic esophageal mobilization; lymph node dissection; anastomosis (VATS or open)

Advantages: lower stricture, leak, and aspiration rates
Lymph Node Dissection

1. All thoracic nodes
2. Left gastric pedicle nodes
3. Celiac axis nodes
4. Gastro-hepatic ligament nodes

Target: At least 16
Preoperative Chemoradiotherapy for Esophageal or Junctional Cancer

- Pts with resectable (T2-3N0-1M0) tumors
- Preop CRT (carboplatin/paclitaxel) + RT (41.4 Gy) followed by surgery vs. surgery alone
- 366 pts enrolled (2004-8); male 284, adeno 273
- Toxicities (grade ≥ 3) in the CRT arm: <5%
CROSS Study

<table>
<thead>
<tr>
<th></th>
<th>CRT+Surgery</th>
<th>Surgery Alone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resection Rate</td>
<td>90%</td>
<td>86%</td>
</tr>
<tr>
<td>R0 Resection Rate</td>
<td>92%*</td>
<td>69%</td>
</tr>
<tr>
<td>pCR</td>
<td>29%</td>
<td>NR</td>
</tr>
<tr>
<td>In-hospital Mortality</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>Median OS</td>
<td>49 months*</td>
<td>24 months</td>
</tr>
<tr>
<td>1, 2, 3, 5 yr survival</td>
<td>82, 67, 58, 47%*</td>
<td>70, 50, 44 34%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Univariate Hazard Ratio (95% CI)</th>
<th>Adjusted Hazard Ratio (95% CI)</th>
<th>P Value for Adjusted Hazard Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients</td>
<td>0.657 (0.495–0.871)</td>
<td>0.665 (0.500–0.884)</td>
<td>0.005</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>0.913 (0.482–1.729)</td>
<td>0.928 (0.487–1.766)</td>
<td>0.82</td>
</tr>
<tr>
<td>Male</td>
<td>0.612 (0.446–0.841)</td>
<td>0.614 (0.447–0.845)</td>
<td>0.003</td>
</tr>
<tr>
<td>Histologic type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>0.627 (0.056–6.970)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>0.732 (0.524–0.998)</td>
<td>0.741 (0.536–1.024)</td>
<td>0.07</td>
</tr>
<tr>
<td>Squamous-cell carcinoma</td>
<td>0.453 (0.243–0.844)</td>
<td>0.422 (0.226–0.788)</td>
<td>0.007</td>
</tr>
<tr>
<td>Clinical N stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.414 (0.234–0.732)</td>
<td>0.422 (0.239–0.747)</td>
<td>0.003</td>
</tr>
<tr>
<td>1</td>
<td>0.793 (0.567–1.108)</td>
<td>0.807 (0.576–1.130)</td>
<td>0.21</td>
</tr>
<tr>
<td>Could not be determined</td>
<td>0.552 (0.066–4.602)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WHO performance score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.617 (0.452–0.844)</td>
<td>0.625 (0.456–0.857)</td>
<td>0.004</td>
</tr>
<tr>
<td>1</td>
<td>0.864 (0.433–1.726)</td>
<td>0.898 (0.753–1.631)</td>
<td>0.77</td>
</tr>
</tbody>
</table>

Minimally Invasive Vs Open Esophagectomy for Patients With Esophageal Cancer

- Pts undergoing MIE or OE for cancer 1999-2007
- MIE 56 pts; OE 98 pts
- Morbidity and mortality not significantly different
- OR time longer in MIE (250 vs 209 m, \(p < 0.001 \))
- ICU stay shorter in MIE (3.0 vs 6.8 d, \(p = 0.022 \))
- No difference in survival
- Conclusions: The MIE is comparable with the OE
Minimally Invasive Esophagectomy For Cancer

- Systematic literature search: 128 publications, 46 original series (1932 patients)
- Analyzed for surgical and oncological outcomes
- Retrospective series of highly selected patients, excluding high-risk patients and locally advanced (T3) tumors
- Pulmonary complications 22%, leak 8.8% and vocal cord palsy 7.1%
Minimally Invasive Esophagectomy For Cancer

- MIE LN retrieval was inferior to open surgery
- F/u too short to draw conclusions regarding long-term survival
- Based on the available literature, the morbidity and mortality of MIE is substantial and comparable to radical open esophagectomy
- Oncological outcome of MIE remains unknown
- MIE: investigational and still evolving
Short-term outcomes following open vs minimally invasive esophagectomy for cancer in England

• UK NHS 2005-2010
• 30-day mortality, cx, and surgical reintervention
• 7502 esophagectomies: 15.4% MIE
• In 2009–2010, 24.7% of resections were MIE
• Mortality (4.3% vs 4.0%; P = 0.61) and
• Cx (38% vs 39%; P = 0.46) in open and MIE groups, respectively
Short-term outcomes following open vs minimally invasive esophagectomy for cancer in England

- A higher reintervention rate was associated with the MIE group than with the open group (21% vs 17.6%, P = 0.006; odds ratio, 1.17; 95% confidence interval, 1.00–1.38; P = 0.040).
- Short-term outcomes are similar
Esophageal Cancer: Improving Outcomes

Short-term outcomes following open vs minimally invasive esophagectomy for cancer in England

<table>
<thead>
<tr>
<th>Medical Complication</th>
<th>Open (n = 6347)</th>
<th>MIE (n = 1155)</th>
<th>Total (n = 7502)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
<td>No.</td>
</tr>
<tr>
<td>Angina</td>
<td>187</td>
<td>2.9</td>
<td>28</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>45</td>
<td>0.7</td>
<td>4</td>
</tr>
<tr>
<td>Congestive cardiac failure</td>
<td>61</td>
<td>1.0</td>
<td>7</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>611</td>
<td>9.6</td>
<td>102</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>1181</td>
<td>18.6</td>
<td>230</td>
</tr>
<tr>
<td>Pleural effusion</td>
<td>1026</td>
<td>16.2</td>
<td>148</td>
</tr>
<tr>
<td>Respiratory failure</td>
<td>238</td>
<td>3.7</td>
<td>46</td>
</tr>
<tr>
<td>Other respiratory complications†</td>
<td>219</td>
<td>3.5</td>
<td>28</td>
</tr>
<tr>
<td>Deep vein thrombosis</td>
<td>39</td>
<td>0.6</td>
<td>6</td>
</tr>
<tr>
<td>Pulmonary embolism</td>
<td>92</td>
<td>1.4</td>
<td>19</td>
</tr>
<tr>
<td>Stroke</td>
<td>14</td>
<td>0.2</td>
<td>2</td>
</tr>
<tr>
<td>Renal failure</td>
<td>126</td>
<td>2.0</td>
<td>17</td>
</tr>
</tbody>
</table>
Trends in Hospital Volume and Operative Mortality for High-Risk Surgery
Finks JF, et al. NEJM 2011; 364:2128-2137

- Median hospital volumes of 4 cancer resections analyzed using Medicare database 1999-2008
- Lung, esophagus, pancreas, and bladder
- Operative mortality declined for all procedures
- Higher volumes explained a large portion of the decline in mortality for pancreatectomy (67%), cystectomy (37%), and esophagectomy (32%), but not for the other procedures
Risk-Adjusted Mortality Associated with Cancer Resections among Medicare Patients, 1999 -2008

Esophageal Cancer: Improving Outcomes
Esophageal Cancer: Improving Outcomes
Comprehensive Evaluation for Aspiration After Esophagectomy Reduces the Incidence of Post-Operative Pneumonia
Berry et al, J Thorac Cardiovasc Surg 2010; 140: 1266-72

• We started a comprehensive evaluation prior to oral feedings following esophagectomy after demonstrating that pneumonia strongly predicts mortality: HR for death=20
• Rigorous swallowing evaluation with clinical observation, cineradiography, and fiberoptic endoscopy was used prior to oral feedings
Comprehensive Evaluation for Aspiration After Esophagectomy Reduces the Incidence of Post-Operative Pneumonia
Berry et al, J Thorac Cardiovasc Surg 2010; 140: 1266-72

- 799 patients (379 early era, 420 later era)
- 30-day mortality = 3%
- Postop aspiration 12%; pneumonia 14%
- Age (p<0.0001), cervical anastomosis (p=0.0009) predicted aspiration (multivariable model)
- Incidence of postop pneumonia was significantly decreased (10% vs 18%, p=0.002) in the later era
Modern Esophageal Resection

- Multidisciplinary evaluation is essential
- Induction therapy esophagogastrectomy is the best option for most patients with \geqT2N0
- Centers with experience have the best outcomes
- Approaches that avoid thoracotomy are preferable
- Perioperative mortality \leq 2%
- Best predictor of post-operative outcome: pneumonia
Minimally Invasive McKeown

- Thoracoscopic mobilization
- Lymph node dissection
- Ligation of thoracic duct
- Gastric mobilization and lymph node dissection
- No pyloroplasty
- Feeding jejunostomy
- Stapled cervical anastomosis: 4-5 techniques
Esophageal Cancer: Improving Outcomes

Stomach

Esophagus