Outline

- Review of normal anatomy, histology and landmarks
- Growth and repair
- Congenital/hereditary disorders
- Metabolic disorders
- Inflammatory disease
- Arthritis/Pathology of the Joint
Bone Landmarks/ A & H

- Anatomic landmarks:
 - Diaphysis: central area
 - Epiphysis: growth plate
 - Metaphysis: active turnover; adjacent to growth plate
 - Cortex
 - Medullary cavity
 - Cancellous/trabecular bone

circumferential bone -- cortical; provides strength
internal bone -- trabecular; provides large SA for hematopoiesis function
function of bone:
 - strength from cortex
 - lightness from trabecular
Bone—Organization and structure
Bone A/H

- Trabecular (mature) bone laid in lamellar fashion
- Immature bone is woven; associated with fracture, repair, tumor, etc.
Bone-woven bone vs lamellar

Fracture callus: laid down in criss-cross after fracture to get strength back

Bone-woven: criss-cross pattern; found in diseased state, or whenever new bone is formed
Osteoblast

- Responsible for synthesizing bone and mineralization
- In active growth or remodeling at edge of advancing bone formation
- Entrapped to become osteocytes

Osteoblast: lays down matrix: bone matrix is Ca; most dry weight is collagen. Form line around edge of advancing bone. When bone is mature they become trapped as osteocytes.
Osteoclasts

- Responsible for bone resorption
- Attach to bone matrix protein
- Form Howship’s lacunae

Osteoclasts: constantly functioning; use 'enzymes and collagenases.' Sit in holes in bone called Howship's lacunae.
Bone development and growth

- Growth
 - Enchondral ossification
 - Membranous ossification
- Remodeling
 - Physical/mechanical forces
 - Mineral deposition and collagen
 - Hormones and paracrine/autocrine functions
Bone growth—enchondral ossification

1. Cartilage precursor
2. Slight calcification
3. Nutrient vessel forms trabecular space, lengthens bone
Enchondral ossification

Get secondary cavity with, above, epiphyseal line (where growth occurs once you’re born), have secondary centers of ossification (important for some pathophys and tumors)
Modeling and Remodeling

Skeletal maturity: 16-17yo (female), 17-19yo (male)

As juvenile, longitudinal growth occurs in epiphyses. As adult, no longer capable of longitudinal growth b/c of fusions; epiphyseal line is where secondary growth occurred.

Juvenile: no epiphyseal line

Adult: epiphyseal lines present
Fracture Callus

healing -- blood collects at site of trauma (hematoma). hematoma organizes region -- nutrients, cartilage precursors, come in, makes woven bone (lacks tensile strength). if ends align, healing occurs quickly. if ends are NOT aligned, very large callus forms. if any wiggling, wont form callus all the way. this is why you have to mobilize the fracture

bad; wide break, poorly aligned

good; closely aligned
example of a bad fracture w/o treatment: callus doesn't form all the way; get bending/wiggling. get psuedoarthrosis ('false joint') predisposes to mech problem and infection
Achondroplasia

- Achondroplasia (from the Greek for "without cartilage") is the most common form of dwarfism, occurring once every 14,000 births.
- Symptoms of achondroplasia include a large head; shorter arms and legs, especially upper arms and thighs; prominent forehead; protruding jaw.

long-bones dont grow; membranous bones DO grow. look short in stature and have short limbs, but normal sized head and trunk
Osteogenesis Imperfecta

- OI an inherited disorder of collagen maturation which results in abnormal skeletal, ligament, skin, sclera and dentin formation

- Major clinical criteria:
 - Osteoporosis
 - Blue sclera
 - Dentigenesis imperfecta
 - Premature otosclerosis
Q: why is the sclera blue?
A: blue-gray color of the sclera is due to the underlying choroidal veins which show through. This is due to the sclera being thinner than normal because of the defective Type I collagen not forming correctly. Dr. H
osteogenesis imperfecta Type II (fetal) is lethal; autosomal recessive. In utero, babies have such fragile bones they fracture, don't survive the birth process.
Osteopetrosis

- Aka “Marble bone disease”
- Heterogeneous group of inheritable conditions characterized by defect in bone resorption by osteoclasts
- “types” based on severity:
 - “Malignant”/infantile form
 - Intermediate
 - “Benign”/adult form

several different types: range from not severe (autosomal dom) to severe (autosomal recessive).
auto dominant not severe usually just have brittle bones
Osteopetrosis

- Pathologic features:
 - Increased susceptibility to fracture
 - Decreased marrow space = anemia, neutropenia

- Radiographic features:
 - Sclerotic bone
 - Erlenmeyer flask deformity
Osteopetrosis—Infantile form

- Lack of bone remodeling = insufficient marrow cavity for hematopoiesis
- Extramedullary hematopoiesis = hepatosplenomegaly
- Failure to thrive, compression effects or severe anemia and thrombocytopenia

Infantile is most severe form (auto recessive). Fetus is affected with bony overgrowth in utero. Most severe symptom/problem: marrow cavities don’t form, so have to have hematopoiesis occur in spleen/liver. Get massive hepatosplenomegaly. Get anemia, thrombocytopenia. Usually expire at birth or shortly after.

Adult is less severe form, will have multiple fractures; ‘inconvenient but compatible w life’
Osteoporosis

peak bone mass: 30 years; everyone gets it, slowly. but older white women get it the worst

- Decrease in amount of bone to the point of spontaneous fracture or fracture after minimal trauma
- In U.S. are 1.5 million osteoporotic fractures with est health care cost of $18 billion
- Older white women most frequently affected
 - Begins as early as 35; 0.2 percent loss per year
 - After menopause loss accelerates
Osteoporosis

- Common fracture sites:
 - Proximal humerus
 - Distal radius (‘colles’ fracture; very common)
 - Hip fracture (susceptible b/c big, weight bearing joint)
 - Spinal compression fracture (get multiple microfractures, compression type fractures)

continued bone loss to the point that they can fracture spontaneously or w/ minimun trauma

in long bones: you have a fall where you use your arms to catch yourself. ‘colles’ fracture
Osteoporosis

Vertebral bodies have big marrow space. VBs fracture anteriorly -- get curvature of spine. See it most commonly in older ladies. Known as 'dowager's hump.'

Femoral neck also very susceptible b/c weight bearing.
Iliac biopsy revealing Microarchitectural deterioration: loss of bone, thinning of remaining bone and lack of trabecular connectivity

histo: L: relatively normal. see cortical area and trabeculae line up, give structural integrity.
R: cortices thinner, trabeculae dont line up or touch, so very weak
so, lose the actual bone mass from both cortical bone and trabecular bone
Osteoporosis

- peak of bone mass: 30yo
- 0.2–1% loss per year
- At menopause: 3–5%

A fracture is very hard to recover from, especially with poor bones.

There are genetic and environmental components. AAAs don't lose bone as quickly as Cs.

If you live to 90yo as a woman, you are losing a LOT of bone density along the way.
Paget’s Disease

- Skeletal disorder with characteristic clinical, x-ray and histologic changes
- Rare before age 40
- Est to involve 2-3% of population over 50.
- Common in individuals of English/Euro descent and of areas settled by immigration: US, Australia, New Zealand, Argentina, South Africa

note that not everyone will have symptoms as severe as what she will describe
Paget’s Disease

- Activation of osteoblasts and osteoclasts resulting in abnormal remodeling of bone.
- High tissue turnover manifests as abnormal lab results
 - Elevated alkaline phosphatase
 - Urinary hydroxyproline (collagen breakdown)
Paget’s Disease

- Bone pain
- Paget bone is prone to fracture
- Neurologic symptoms
- Increased risk of sarcoma

osteosarcoma, normally a dz of infants to adolescents, but second peak in >50yo due to pagets dz
Paget’s Disease

- Imaging findings depend on phase of disease
- Deformity, thickening and coarsening
- Weak, “brittle” bones

- can be multi or uni focal
- can be severe or clinically asymptomatic

- evidence of deformity, thickening, radiolucency

- what are the three phases?
 - blastic phase
 - clastic phase (resorbed)
 - sclerotic phase
Paget’s histology

Histology doesn't help to diagnose except for mosaic pattern of bone formation in burnt out, end stage. What can happen in the early stage? High output heart failure.
Osteomalacia

- Defect in mineralization of bone = increase in unmineralized osteoid

- Numerous mechanisms:
 - Dietary deficiencies
 - Renal tubule leak (Ph)
 - Hepatobiliary disease
 - Metal poisoning
 - Drugs
 - Malabsorption

Collagen precursor does not get mineralized, so there is a lack of osteoid. Green = unmineralized. Red = bone being laid down in a nice lamellar pattern.
Rickets

- Osteomalacia of childhood
- Skeletal effects more profound on developing skeleton
- Disturbances of growth plate = deformity and dwarfism

reached peak incidence in early industrial era in the UK, where lots of malnutrition and lack of exposure to sunlight. In developing infant/newborn, affects of osteomalacia are very profound. Get irreversible deformity and bowing of the legs. Rickets not 'just historic' due to food fat-ism, continued malnutrition
Regulation of calcium homeostasis

- GI malabsorption syndrome
- Kidney disease -- where Ca, P are reabsorbed
- Liver
- Lack of sunlight
Hyperparathyroidism

- Primary and secondary
- Increased PTH leads to osteoclastic bone resorption

Histology depends on underlying metabolic defect.
Hyperparathyroidism—Brown tumor

unusual presentation: localized defect in bone where it simulates a tumor.
HPTism will give bone pseudotumors that mimic bone tumor

Proliferation of osteoclasts causes 'pseudotumor'

bone is just full of osteoclasts. giant cell tumor looks almost identical -- look out for it on next lecture!
Osteonecrosis

- Traumatic
- Iatrogenic:
 - Radiation
 - Corticosteroids
- Sickle cell disease
- Gaucher Disease
- Alcohol
- Idiopathic

Causes:
- long-term steroid use
- large number of cases are idiopathic; unclear
Osteonecrosis

- Histologic changes:
 - Loss of marrow and fat saponification
 - Loss of osteocyte nuclei

Bone dies, marrow becomes fibrotic, get fat saponification
Osteomyelitis

- Pyogenic/bacterial

Routes of spread

- Hematogenous
- Extension from contiguous site
- Direct implantation (trauma)

usually bacterial; any systemic infection is a risk factor.
Systemic ie UTIs, commonly due to really bad trauma / fractures (especially that involve a break in the skin)
Osteomyelitis – organisms

- 50% -- no organism is ever isolated
- Other:
 - *Staphylococcus aureus* very commonly isolated
 - *E Coli, Pseudomonas, Klebsiella* also commonly isolated
 - *Haemophiles influenza, Group B strep* in peds
 - *Salmonella* in sickle cell patients

even if you do isolate, can be polybacterial

‘this makes a good test q’
Osteomyelitis
Osteomyelitis-Brodie’s Abscess

- Possible outcomes of untreated/undertreated osteomyelitis
 - Low-grade, well localized bone abscess
Osteomyelitis- sequestrum and involucrum

dead bone that is a nidus of infection; used clinically to describe an area of concern

native, healthy bone that forms around the sequestrum to seal it off from the rest of the body; not really used clinically

sequestrum

involucrum

"this is a cow bone."
Potts Disease

- Increasing incidence with globalization and increase in iatrogenic or acquired immunosuppression
- Pulmonary disease is most common but subset will form osteomyelitis

Special type of osteomyelitis due to TB. Tuberculoid osteomyelitis is a bad dz -- likes to infect the spine, is very destructive. Causes all types of destructive foci, causes soft tissue calcification, can get ankylosis of vertebrae.

‘If you see an infection of the spine, think potts dz.’
Potts Disease

- Fragmentation of vertebral bodies
- Obliteration of disc space
- Calcified soft tissue masses
- Encroachment on spinal canal
Mycobacteria
Osteoarthritis

happens to all of us: degeneration and process of wear and tear helps to cause this. secondary effects -- repeated trauma (athlete), overweight, malalignment in joint, etc.

- AKA “Degenerative joint disease”
- Ubiquitous process with increasing prevalence relative to age
- Different manifestations in depending on location, severity
- Clinical: Pain and stiffness, lack of mobility
- Primary osteoarthritis— “wear and tear”
- Secondary OA-congenital deformity, repeated mechanical trauma, obesity, other underlying disease
Osteoarthritis

(probably genetic underpinning and env, but is ubiquitous; just wear and tear)

Intrinsic Joint Vulnerabilities (Local Environment):
- Previous Damage (eg meniscal tear)
- Bridging muscle weakness
- Misshapened joint
- Malalignment
- Proprioceptive deficiencies

Use (Loading) Factors Acting on Joints:
- Obesity
- Injurious Physical Activities

Systemic Factors Affecting Joint Vulnerability:
- Age
- Gender
- Race
- Genetic susceptibility
- Nutritional factors

Susceptibility to OA

Osteoarthritis or its Progression
Osteoarthritis

- Histologic changes:
 - Fibrillation and cracking of the surface articular cartilage
 - Loss of cartilage and formation of “joint mice”

large weightbearing joints are most affected. The articular surface is fibrillated ('torn up'). Get pieces of cartilage that fall off due to degenerative process, fall into the joint, called joint mice. Joint mice move around, cause some clicking, popping, immobilization. Accounts for some, but another process also occurs -- see next slide.
Osteoarthritis—histologic changes

- Exposure of underlying bone (eburnation)
- Formation of osteophytes and cysts within the subchondral bone

as that happens, get intensively painful bone-on-bone grinding. Bone tries to remodel itself, but has poor architecture, causing osteophytes -- irregular protrusions of bone. This exacerbates the problems -- decrease in range of motion and increased pain
Osteoarthritis

osteophytes in periphery

femoral head -- collapse of joint space. thinning, grinding of bone on bone; causes pain
Manifestations of osteoarthritis

- Heberden’s node: sometimes get first in hands. Get inflam and deformity in hands. Notice that THIS deformity in hands is different that seen in RA.
- Bouchard’s node
Osteoarthritis
Osteoarthritis

- Laboratory findings
 - Normal sedimentation rate
 - Synovial fluid is clear/viscosity normal
 - Fragments in fluid

- Treatment
 - Anti-inflammatory/Analgesics
 - Surgical

 "Fortunately very good"

- notes:
 - non-specific except for 'joint mice'
 - have joint mice in synovial fluid. can be small or can be macroscopic
 - lots of anti-inflam and analgesics. once they stop working shift to surgical tx.
 - 'we have an epidemic of hip and knee replacements'.
Rheumatoid arthritis

- Chronic, systemic inflammatory disorder associated with autoimmune factors
- Manifests as joint disease but to lesser extent skin/soft tissue (rheumatoid nodules) and vessels

RA: small joints (hands and feet) first. is inflammatory, systemic dz. caused by autoantibody IgM attacking Fc portion of normal Ig. in RA, get 'villus hypertrophy' -- lining of joints get inflamed, get influx of inflammatory cells, inflamed tissue grows, starts to invade into the bone, causes deformity. also get changes in soft tissue and vessels (bc is systemic dz)
Rheumatoid arthritis

- Affects small joints before large joints
- Hands and feet; later wrists, ankles, cervical spine
- More common in women than men; 40 to 70. Genetic susceptibility

'Ulnar deformity of the hands.' Usually women b/c more susceptible. Large joints get involved relatively late in the dz.
Rheumatoid arthritis

This is an inflammatory disease. In synovium, which is hypertrophic, see influx of inflammatory cells. Synovium makes pannus, pannus invades cartilage, which takes cartilage off and 'throws it' into the joint. 'Rice bodies cause all kinds of problems.' Rice bodies are made up of hypertrophic synovium that break off.
Rheumatoid arthritis

- Diagnosis on basis of multiple clinical and lab findings
- Other findings:
 - Rheumatoid nodule
- Lab:
 - Serum Rheumatoid factor: IgM to Fc of IgG

foci of necrosis can occur on elbows, arms.
Other common deformities

Instead of ulnar, can get boutonniere ('button hole') and swan-neck deformity.
Juvenile Rheumatoid Arthritis

- Begins in large joints:
 - Knees, ankles, elbow
- Rheumatoid factor is negative
- ANA is positive

- Occurs in persons <18.
- Affects large joints.
- Histology is the same as RA, but don’t have the RhF as seen in adults (usually 80% adults). Instead have ANA+.
Rheumatoid variants

- AKA Seronegative spondyloarthopathies
- HLA-B27
- Ankylosing spondylitis, psoriatic arthritis, mixed connective tissue disease, others

related in pathophys but have different etiologies; usually related to HLA-B27.

ankylosing spondylitis -- affects more men than women. path: isolated to spine -- get inflammation and ankylosis (complete fusion of elements of the spine). causes devastatingly limited mobility.
Gout

- Intense pain in peripheral joints
- Usually occurs in adult men
- Diet and alcohol consumption
- Genetic predisposition

‘the dz of kings.’ usually have a very rich diet (meat, alcohol instead of just grains). distinct clinical presentation -- pain in the toe!
Gout

- Precipitation of sodium urate crystals in and around joints
- Predilection for small peripheral joints, particularly metatarsal phalangeal
Gout—Diagnosis

- Demonstration of refractile needle shaped crystals in joint fluid and tissue
- Elevated serum urate levels

distinct clinical pres: elevated serum uric acid. if you aspirate, can see crystalline uric acid
Gout vs Pseudogout

- Deposition of Calcium Pyrophosphate Dihydrate crystals (CPPD) in synovial fluid and tissue
- Simulates other diseases: Gout, DJD, RA
- Prevalence increases with age

Pseudogout can mimic gout. Caused by Ca crystal. This dz has a lot of similarities but don't have elevated uric acid (or if is elevated, it is not the cause of arthropathy). Usually ass'd with several other types of dzs, i.e., collagen and vascular dzs that increase with age.
Crystals: gout vs pseudogout

- Pseudogout: dense Ca rhomboid deposits
- Gout: long, sharp uric acid needles
Path – Bone metabolic disease

<table>
<thead>
<tr>
<th>Condition</th>
<th>Serum Calcium</th>
<th>Serum Phosphate</th>
<th>Alk Phos</th>
<th>PTH</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osteoporosis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>C: Elderly, postmenopausal E: ↓ bone mass</td>
</tr>
<tr>
<td>Osteopetrosis (marble bone)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>C: Failed normal bone resorption E: Thickened dense bones, anemia, infection-prone, etc.</td>
</tr>
<tr>
<td>Osteomalacia/Rickets</td>
<td>↓</td>
<td>↓</td>
<td>-</td>
<td>↑</td>
<td>C: Defective mineralization E: Bowing of legs, “Rosary chest”</td>
</tr>
<tr>
<td>Osteitis fibrosa cystica</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>C: Hyperparathyroidism E: “Brown” tumors – cystic spaces lined by osteoclasts and full of stroma and sometimes blood</td>
</tr>
<tr>
<td>Paget’s Disease</td>
<td>-</td>
<td>-</td>
<td>↑</td>
<td>-</td>
<td>C: Increased osteoblastic and osteoclastic activity (~balanced) E: Mosaic bone pattern. Can lead to osteogenic sarcoma</td>
</tr>
</tbody>
</table>

Slide from MSIII USMLE Review!