Intra-Operative Thoracoscopic Assisting Techniques

S. Scott Balderson PA-C
Clinical Instructor, Duke Surgical Physician Assistant Residency
Division of Thoracic Surgery
Thoracic Oncology Program
Duke Comprehensive Cancer Center
Duke University Medical Center
Durham, NC
Disclosures

- Covidien Consultant
- W.L. Gore Consultant
AKA: How to Help Your Surgeon Overcome The Learning Curve

- Barriers to Adoption
 - Qualified Assistance
 - Specific Equipment
 - Specific Instruments
Objectives

- Thoracoscopic Case Preparation
 - Team, Equipment and Instruments, Positioning
 - Equipment
 - Instruments
 - Positioning

- Thoracoscopic Assisting Techniques
 - The Camera Pilot
 - Tricks of the trade
 - helpful thoracoscopic assisting maneuvers
Basic Concepts in VATS

- Best results with a dedicated team
- Visualization is an important key to success
 - Difficult angles
 - Multiple instruments through the same incision
 - High rent district
Basic Concepts in VATS

- No insufflation needed
 - Ribs maintain the workspace once the lung is collapsed

- No ports needed
 - Only one port is usually used for the camera
 - Allows multiple instruments per incision

- Incision Placement is critical
 - Ribs limit motion of the camera
 - Too much torque on ribs will cause post-op neuropathic pain
The Thoracoscopic Lobectomy Team

- **Surgeon**
- **Camera Pilot**
 - Goal is seamless view with minimal communication and correction by the surgeon
- **Scrub tech**
 - Should know the instruments and backup plans (sponge stick)
 - Should aspire to familiarize with the intended steps and common maneuvers of the procedure
 - Sxn-dissecting clamp-sxn-stapler
- **Circulator**
 - Should know the types of staple loads used and where to find them quickly
 - Support Personnel who are familiar with ordering procedures
Building a Team

- Consistency
 - Consistent assistants are more important than the level of training
 - Partner, Resident, Physician Assistant, Nurse, Scrub Tech
 - However, the higher the level of training and/or experience, the better the procedural insight, understanding of thoracic anatomy, etc.
 - Ex. Understanding the difference between a PTX vs Tension PTX
Building a Team

Communication

- Clarify the names of instruments
 - Often local names
 - “long curved empty”
 - “Scanlan clamp”
- Clarity is essential among Surgeon, Scrub, Circulator and First Assist (Camera Pilot)
- Over time the surgeon and camera pilot should develop a language that quickly and efficiently communicates the needs of the surgeon
 - “The Sterile Cockpit”
The First Assistant = Camera Pilot

- What to look for in a Camera Pilot
 - Interest in minimally invasive surgery
 - Passion, patience, reverence (root word of passion is...)
 - Experience in thoracic surgery
 - Willingness to learn thoracoscopic anatomy
 - (hilar perspective as opposed to “fissure” perspective)
 - Knowledge of instrumentation
 - Knowledge of equipment
 - A resonant appreciation for the technical contribution to the case

- Of the above only Interest is mandatory the rest can be learned and developed
Camera Pilot

- Poor Camera operation can make for a painfully long case
 - When the scope has to be removed to be cleaned
 - When the pilot has difficulty reintroducing the scope into a complex hemithorax
 - Smudge
 - Reproducing the a consistent view in scope angle and horizon

- Poor Camera operation can impact the safety of a case
 - If the surgeon cannot visualize……
Camera Operations

- Camera Pilot needs a working knowledge of the function of the camera/scope/monitors
 - Proper use of 30 degree, flexible tip or other scope optimizes the surgeon’s view
 - In the HD world it is VERY IMPORTANT to understand how the technology functions and what the technological implications are for the surgeon.
 - Ex. Low light = grainy picture = loss of resolution = loss of ability to visualize planes...
 - Helpful in troubleshooting
Camera Operations

- Camera Pilot should understand the steps for the intended procedure
 - Allows anticipation of the surgeon’s next move
- The camera view is very much a dance, the surgeon must be allowed to move within the frame as opposed to being led.
 - The pilot must know (or ask) what should be in the center of the screen (instrument, structure etc)
- Goal is for the only perception of movement on the monitor to be the maneuvers of the surgeon
- The Pilot must come to appreciate the value
Thoracoscopic Equipment
Thoracoscopic Equipment
Thoracoscopic Equipment - Storz
Thoracoscopic Equipment - Storz
Thoracoscope - Design

- ALL Thoracoscopes are VERY fragile.
- 10lbs of force will break a 10mm scope
 - The weight of the camera alone can damage the outside casing
 - A dent in the casing means that light fibers can be broken.
 - Think of the times where you THINK the scope is in focus but it is not in certain areas of the field.
- 3lbs of force will snap a 5 mm scope
 - Will bow 20 degrees before resistance can be detected
Thoracoscope Design
Thoracoscopic Equipment - Olympus
Thoracoscopic Equipment - Olympus
Thoracoscopic Equipment - Olympus
Beware Scope Damage
Determining the damaged scope
Chipped Distal Lens
Broken Light Fibers
Rod Lens No Longer Lines Up
Anti-Smudge Products - Floshield
Thoracoscopic Instruments
Thoracoscopic Instruments
Thoracoscopic Instruments - Scanlan
Thoracoscopic Instruments
Thoracoscopic Instruments
Thoracoscopic Instruments - Wexler
Thoracoscopic Instruments - Covidien
Thoracoscopic Instruments - Covidien
Thoracoscopic Instruments - Ethicon
Patient positioning - Bean Bag
Patient Positioning

- **Standard lateral decubitis position**
 - Flex the bed
 - Helps keep the camera from hitting the hip which limits camera angles
 - Slightly posteriorly rotated
 - Makes the anterior incision a little easier to access
Patient Positioning - Bean Bag
Patient Positioning - Secure Strap Location (Anterior)
Patient Positioning - Stability Posterior
Patient Positioning - Secure to Table
Patient Positioning - Table Break (flex)
Patient Positioning - Axilla and Securing Arms
Patient Positioning - Axilla
Incisions

- Two incisions will allow almost any operation
 - 10 mm camera port
 - 7th or 8th intercostal space, posterior axillary line
 - 3-4 cm anterior access incision
 - 4th or 5th intercostal space, anterior axillary line
Patient Positioning - Marking Incision
Putting it all together to start a case

- Consistent approach is an operative strategy
- Use of a consistent patient position and incisions provides consistent exposure for the surgeon
- Consistent exposure, regardless of the planned anatomic resection, provides the surgeon a familiar field to develop consistent maneuvers
- Beware the theory of triangulation etc.
- Predictable and Consistent angles of approach and retraction are key to a successful procedure
Part 2

- Tricks
Camera Operations

- There must be a clear method of communicating the visual (exposure) needs of the surgeon as:
 - The pilot has three perspectives to maintain: the focal length, camera head rotation and the scope angle.
Camera Operations

- **Focal Length**
- **A depth of field must be developed**
 - Facilitates depth perception
 - Close but not too close
 - If too close, the camera can affect the instrument angles available to the surgeon
 - A tight focal length can be helpful during delicate dissection but hurtful for frame of reference
 - **Anticipate when to pan in and out**
 - Understanding the action being performed
 - Adjusting retraction vs. fine dissection on the artery
Focal length - loss of reference
Focal Length – reference (the power of panning out 2cm!!)
Camera head rotation controls:

Horizon

- Refers to the structure on which the camera view is based.
Camera Operations

– Third control is the barrel of the light cord which controls the scope angle (exception: Olympus)

– Clock face
 • Refers to the barrel of the light cord on the scope relative to the position of the hour hand on a clock
 • Functionally, this reference can allow the surgeon to request a different angle without having to reach across to adjust the scope angle.
Camera Operations

- Together the focal length, horizon and scope angle facilitate visual feedback to create as close to a three dimensional view as possible

- Optimizing these controls also minimize the incidence of intercostal nerve irritation
 - Beware intercostal compression injury
 - 10mm vs 5mm scope – fragility
Duke beats UNC!!!