Robotic Thoracoscopic Lobectomy

Kazuhiro Yasufuku MD, PhD
Director, Interventional Thoracic Surgery Program
Associate Professor of Surgery, University of Toronto
Division of Thoracic Surgery, Toronto General Hospital

Masters of Minimally Invasive Thoracic Surgery Sep 18-20th, 2014
Disclosure

- Industry-sponsored grants
 - Educational and research grants from Olympus Medical Systems Corp.

- Consultant
 - Olympus America Inc.
 - Intuitive Surgical Inc.
 - Covidien
 - Johnson and Johnson

- Research Collaboration
 - Siemens
 - Novadaq Corp.

Source: Intuitive Surgical
da Vinci Surgical Systems – Canada 1999 - 2013

Source: Intuitive Surgical
da Vinci Surgical Systems – Global

Source: Intuitive Surgical
Robotic Platforms

• “standard” da Vinci – 1999
 • Surgeon’s console
 • Patient Cart
 • Vision Cart

• da Vinci S – 2006
 • Tile Pro function
 • Docking improvements
 • Reduced footprint of patient cart

• da Vinci Si – 2009
 • Camera improvements
 • HD optics
 • Customizable console
 • Finger clutching
da Vinci Robotic Lobectomy
Robotic Lobectomy – Approach (R Lung ca)
Robotic Surgery – Approach (L Lung ca)
Robotic Lobectomy – Oncologic results

• Multi-institutional retrospective review (n=325)
 • Majority clinical stage I (IA, 247; IB, 63)
 • Conversion rate: 8% (27/325)
 • Morbidity 25.2% (82/325)
 • Mortality 0.3% (1/325)
 • Major complication rate 3.7% (12/325)
 • p stage: IA, 54%, IB, 22%, IIA, 13%, IIB, 5%, IIIA, 6%

• Overall 5 year survival 80% (CI 73-88)
 • IA 91%, IB 88%, II 49%

Robotic Lobectomy – Comparison to open

• Single institution experience
 • Completely portal 4-arm robotic operation (CPRL-4) (n=168)

• CPRL-4 (n=106) vs Thoracotomy (n=318)
 • Propensity-matched comparison
 • Morbidity (27% vs 38%, p=0.05)
 • Mortality (0% vs 3.1%, p=0.11)
 • Mental QOL (53 vs 40, p<0.001)
 • Hospital stay (2.0 vs 4.0 days, p=0.02)

Increasing number of Robotic lobectomy

- Open vs VATS vs Robotic: Review of National Database
 - Comparison using State Inpatient Databases (2008-2010)
 - Propensity-matched analysis for comparison of outcomes

- Results
 - 33,095 pts (Open: 20,238; VATS: 12,427; Robotic: 430)
 - Case volumes for robotic increased from 0.2% to 3.4%

Increasing number of Robotic lobectomy

• Open vs VATS vs Robotic: Review of National Database
 • Robotic vs Open
 • Significant reduction in mortality, LOS, overall survival
 • Robotic vs VATS
 • Reduction in mortality, LOS, overall complication rates but not statistically significant

Table 4. Propensity-Matched Analysis of Patients Undergoing Open, Video-Assisted Thoracic Surgery (VATS) or Robotic Pulmonary Resection

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Open (n = 1,233)</th>
<th>VATS (n = 1,233)</th>
<th>Robotic (n = 411)</th>
<th>p Valuea</th>
<th>p Valueb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>25 (2.0%)</td>
<td>14 (1.1%)</td>
<td>1 (0.2%)</td>
<td>0.122</td>
<td>0.016</td>
</tr>
<tr>
<td>LOS (mean)</td>
<td>8.2</td>
<td>6.3</td>
<td>5.9</td>
<td>0.454</td>
<td><0.0001</td>
</tr>
<tr>
<td>Routine discharge</td>
<td>734 (59.5%)</td>
<td>795 (64.5%)</td>
<td>262 (63.7%)</td>
<td>0.828</td>
<td>0.214</td>
</tr>
<tr>
<td>Prolonged LOS</td>
<td>118 (9.6%)</td>
<td>85 (6.9%)</td>
<td>18 (4.4%)</td>
<td>0.118</td>
<td>0.003</td>
</tr>
<tr>
<td>Any complication</td>
<td>667 (54.1%)</td>
<td>558 (45.3%)</td>
<td>180 (43.8%)</td>
<td>0.674</td>
<td>0.003</td>
</tr>
<tr>
<td>Bleeding complication</td>
<td>24 (1.9%)</td>
<td>16 (1.3%)</td>
<td>7 (1.7%)</td>
<td>0.633</td>
<td>0.795</td>
</tr>
</tbody>
</table>

a Between robot and VATS resections. b Between robot and open resections.

Learning Curve

- Learning is more rapid with Robotic compared to VATS surgery

Table: Number of operations required to achieve proficiency with VATS lobectomy and robotic lobectomy

<table>
<thead>
<tr>
<th>Study</th>
<th>Ref. no.</th>
<th>Year</th>
<th>Lung operation</th>
<th>No. of operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gharagozloo et al.</td>
<td>[16]</td>
<td>2009</td>
<td>Robotic lobectomy</td>
<td>20</td>
</tr>
<tr>
<td>Veronesi et al.</td>
<td>[38*]</td>
<td>2010</td>
<td>Robotic lobectomy</td>
<td>18</td>
</tr>
<tr>
<td>Louie et al.</td>
<td>[27**]</td>
<td>2012</td>
<td>Robotic lobectomy</td>
<td>6</td>
</tr>
<tr>
<td>Lee et al.</td>
<td>[41]</td>
<td>2009</td>
<td>VATS lobectomy</td>
<td>30–50</td>
</tr>
<tr>
<td>Belgers et al.</td>
<td>[42]</td>
<td>2010</td>
<td>VATS lobectomy</td>
<td>25–30</td>
</tr>
<tr>
<td>Petersen and Hansen</td>
<td>[43]</td>
<td>2010</td>
<td>VATS lobectomy</td>
<td>50</td>
</tr>
</tbody>
</table>

VATS, video-assisted thoracic surgery.

Robotics: Higher Costs and operating time?

- Comparison of Robotic vs VATS lobectomy/wedge resection (Multihospital database)
 - Robotic is associated with higher hospital costs and longer OR time without any differences in adverse events

<table>
<thead>
<tr>
<th></th>
<th>Lobectomy</th>
<th></th>
<th></th>
<th>Wedge resection</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RATS</td>
<td>VATS</td>
<td>P value</td>
<td>RATS</td>
<td>VATS</td>
<td>P value</td>
</tr>
<tr>
<td>Length of stay (d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>4</td>
<td>4</td>
<td></td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>6.07</td>
<td>5.83</td>
<td>.6131</td>
<td>5.23</td>
<td>5.38</td>
<td>.7188</td>
</tr>
<tr>
<td>SD</td>
<td>6.44</td>
<td>5.03</td>
<td></td>
<td>5.18</td>
<td>5.27</td>
<td></td>
</tr>
<tr>
<td>Total hospital costs ($)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>21,833.34</td>
<td>18,080.11</td>
<td></td>
<td>17,341.33</td>
<td>13,640.52</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>25,040.70</td>
<td>20,476.58</td>
<td><.0001</td>
<td>19,592.42</td>
<td>16,600.13</td>
<td>.0001</td>
</tr>
<tr>
<td>SD</td>
<td>13,164.01</td>
<td>10,977.67</td>
<td></td>
<td>9,293.64</td>
<td>10,367.82</td>
<td></td>
</tr>
<tr>
<td>Operating room time (h)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>4.25</td>
<td>4</td>
<td></td>
<td>2.93</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>4.49</td>
<td>4.23</td>
<td>.0959</td>
<td>3.26</td>
<td>2.86</td>
<td>.0003</td>
</tr>
<tr>
<td>SD</td>
<td>1.98</td>
<td>1.73</td>
<td></td>
<td>1.41</td>
<td>1.31</td>
<td></td>
</tr>
</tbody>
</table>

Robotic Surgery - advantages

- 3D, HD vision
- 10x magnification
- Motion scaling
 - Tremor filtration
- Improved surgeon ergonomics
- Increased dexterity & precisio
Robotic Surgery - disadvantages

• Lack of haptic/tactile feedback
 • interface with new surgical platform

• Surgeon in non-sterile field
 • reliance on bedside assistant
 • training issues

• Docking and OR setup time

• Cost $$$
Robotic Lobectomy

• Robotic lung cancer resection offer comparable radicality and safety to VATS and open surgery

• Intuitive movements, greater flexibility and 3D, high definition vision allow surgeons to perform surgery easier with shorter learning curve than VATS

• High capital and running costs, limited instrument availability and long OR times are important disadvantages
Division of Thoracic Surgery
Toronto General Hospital
University Health Network

Kazuhiro Yasufuku, MD, PhD, FCCP
kazuhiro.yasufuku@uhn.ca

Thank you