Sublobar Resection is Underutilized – Con

Robert J. Cerfolio, MD, MBA, FACS, FCCP
Chief of Thoracic Surgery at UAB
JH Estes Endowed Chair Lung Ca Research
Professor of Surgery, UAB
Future of Thoracic Surgery

Financial Disclosure

• Conflict of interest …
• Coaching ….. Teaching …
• Now get paid do so ….
• Honorarium from Intuitive, Ethicon, Covidian, KCL, to proctor, coach, pinnacle
• Also I devised PRIIME …
• Written book …
SUPER PERFORMING
AT WORK AND AT HOME

The Athleticism of Surgery and Life

Available on amazon.com
Chinese, Japanese
Great Debate

My View

• My stance …
• Lobectomy not used enough, esp. MIS lobectomy, nor is LN dissect
• Part problem definition
• If RML is a lobectomy, why is a lingulectomy a segmentectomy?
Great Debate
Evidence Based Decision Making

Current data not A the Q

• Nor will the long expensive study ongoing ..
• He CALGB 4051
• Lets review its design …
• PRIMARY OBJECTIVES:
 • I. To determine whether disease-free survival (DFS) after sublobar resection (segmentectomy or wedge) is non-inferior to that after lobectomy in patients with small peripheral (=< 2 cm) non-small cell lung cancer (NSCLC).
Wedge resection or segmentectomy may be less invasive types of surgery than lobectomy for non-small cell lung cancer and may have fewer side effects and improve recovery.
SECONDARY OBJECTIVES:

I. To determine whether overall survival (OS) (after sublobar resection) is non-inferior to that after lobectomy.

II. To determine the rates of loco-regional and systemic recurrence (exclusive of second primaries) after lobar and sublobar resection.
• III. To determine the difference between the two arms of the study in pulmonary function as determined by expiratory flow rates measured at 6 months post-operatively.
• IV. To explore the relationship between characteristics of the primary lung cancer, as revealed by pre-operative computed tomography (CT) and positron emission tomography (PET) imaging, and outcomes.
V. Determine the false-negative rate of preoperative PET scan for identification of involved hilar and mediastinal lymph nodes.
• VI. Assess the utility of annual follow-up CT imaging after surgical resection of small stage IA NSCLC.II
• ARM I: Patients undergo lobectomy by open thoracotomy or video-assisted thoracoscopic surgery (VATS).

• ARM II: Patients undergo a wedge resection or anatomical segmentectomy by open thoracotomy or VATS.
After completion of study treatment, patients are followed up every 6 months for 2 years and then annually for 5 years.
How study interpreted .. Hx tells us a lot .. Look at Ln study …

• Some interpret: can take no LN
• Segmentect as good as lobe…
• When study over: general surg. do wedges, take no LN’s
Real Issues

• Location, location, location …
• Segmentectcs not the same …
• Some segmentectomy difficult
• Some not really segments ..
• Lobes different: RUL, RML, LUL
• Sup. segm. different basilar segm
Real Competition
Not Lobectomy - Its SBRT

• True comp debate .. SBRT
• Segmentectomy will have to be chosen more .. b./c reality
• Less M/M, better PFT’s
• Lung Ca screening → smaller nod
• Hard find some nodules
• Miss them on segmentectomy
• Are PFT really better?
• Lobectomy safer in many pts
• Our study
2/10 -12/14 - 100 pts OR robotic lobe
7 pts converted to robotic lobectomy
Remaining 93 patients had an anatomic robotic segmentectomy
No conversions to thoracotomy
Lung Ca - 79, M1 -10, fungal in 4 and others in 7.
Median age was 69 (50 men)
Median blood loss was 20 cc (range of 10 – 120)
Median number of lymph nodes removed was 19,
Median Tot Op T - 1.47 hrs (88 minutes)
Median hospital stay – 2 days
Major M/M – 2 pts…(pneumonia)
All had an R0 resection
0 – 30 day and 90-day mortality
79 pts -lung cancer, median follow-up was 30 months, three patients (3.9%) had recurred in the operated lobe