Comparative Studies and Metabolic Effects of Sleeve Gastrectomy

Alfonso Torquati MD, MSCI
Associate Professor of Surgery
Disclosures

- NIH-NIDDK: grant support
- Covidien: consulting agreement, grant support
- Allergan: consulting agreement
Body Weight Is Highly Regulated

- **Counter Regulation:**
- Changes in appetite and metabolic rate proportional to the change in body weight work to maintain weight within a set range.

<table>
<thead>
<tr>
<th>Usual weight</th>
<th>Weight gain</th>
<th>Weight loss</th>
<th>Counter regulation</th>
<th>Counter regulation</th>
</tr>
</thead>
</table>
Counter Regulation: The “Adipostat”

- Brain
- Circulating Signal
- Caloric Intake
- Body Fat Stores
“Obesogenic” Environment

Eat more:

Increased food availability
- calories/person/day has increased 15% since 1970
- % of food $ spent outside the home has doubled since 1970

Increased portion size
- in the 1950’s a 12 oz soda at McDonalds was king-sized; now it’s child size

Increased energy density (kcal/g)
- high fat foods; low fat/low cal foods

Do less:

Increased sedentary leisure time activities
- TV, computers, video games; cutbacks in mandatory PE

Decreased occupational physical activity

Increased use of automobiles
Over the next 20 years obesity will be the #1 health problem in the world.
The Elusive Magic Pill for Obesity
Bariatric Mechanisms of Weight Loss

- The key question is, how does bariatric surgery overcome an individual's adipostatic compensatory mechanisms and maintain significant weight loss?
- Changes in the entero–encefalic endocrine axis may offer part of the explanation.
Objectives

• To challenge **caloric restriction** as the only mechanisms of weight loss and comorbidities resolution after the two most common restrictive procedures:
 • Laparoscopic Adjustable Gastric Banding (LAGB)
 • Laparoscopic Sleeve Gastrectomy (LSG)

• To Review Components Changes of the Entero–Encephalic Endocrine Axis (**Metabolic Effects**) after these procedures.
Laparoscopic adjustable gastric banding (LAGB)

- A silicon band attached to a subcutaneous port is placed around the proximal stomach
- Injection of isotonic fluids into the port hydraulically inflates the band

Advantages
- Reversible and adjustable
- Low operative complication rate
- Lower risk of gallstones
- Return to work 1 week after surgery

Disadvantages
- Requires an implanted medical device
- Easier to ‘cheat’
- Risk of slippage or erosion
LAGB and conventional therapy for T2D: A randomized controlled trial

- First RCT to compare surgically induced weight loss versus conventional therapy in the management of T2D
- First RCT to study patients with T2D and obesity
- Participants: 60 obese patients (BMI 30–40) with recently diagnosed (<2 years) diabetes
- Outcome measures:
 - Primary: remission of T2D as measured by fasting plasma glucose (FPG) <126 mg/dL and HbA₁c <6.2%
 - Secondary: weight loss and components of the metabolic syndrome

Adjustable Gastric Banding and Conventional Therapy for Type 2 Diabetes: A Randomized Controlled Trial

- **Context**: Observational studies suggest that surgically induced weight loss may be effective therapy for type 2 diabetes.
- **Objective**: To determine if surgically induced weight loss results in better glycemic control and improved diabetes medication requirements compared to weight loss and diabetes control.
- **Design, Setting, and Participants**: Unblinded, randomized controlled trial conducted from December 2004 to December 2006 at the University of Sydney, Australia, with general community recruitment to established treatment programs. Participants were 60 obese patients (BMI >30 and <40) with recently diagnosed (<2 years) type 2 diabetes.
- **Interventions**: Conventional diabetes therapy with a focus on weight loss by lifestyle change vs laparoscopic adjustable gastric banding with conventional diabetes care.

Shaded area indicates Position of picture box

Study Design

Maximise current management

Weight loss surgery and conventional therapy for T2D n=30

Regular review 4–6 weeks

Conventional therapy for T2D n=30

2 years

LAGB placed by 1 of 2 surgeons via Pars Flaccida technique

Best available medical practice

LAGB induces loss of excess weight*

*Excess weight calculated using BMI 25 as the ideal

p<0.001

LAGB induces T2D remission

Dixon: Conclusions

- Mean HbA$_{1c}$ and FPG levels were significantly lower in the surgical group at 2 years versus the conventional therapy group ($p<0.001$)
- Significant reduction in use of medications for glycemic control in the surgical group compared versus the conventional therapy group at 2 years
- Significantly fewer subjects had metabolic syndrome in the surgical group (30%) versus the conventional therapy group (87%) at 2 years ($p<0.001$)
- The surgical group had a significantly greater improvement in insulin resistance, levels of triglycerides and high-density lipoproteins than the conventional therapy group

Weight control hormones that have been studied after LAGB

<table>
<thead>
<tr>
<th>Hormone</th>
<th>Origin</th>
<th>Mechanism of action in obesity</th>
<th>Effect on weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ghrelin</td>
<td>Primarily stomach fundus</td>
<td>Stimulates GH release</td>
<td>Stimulates appetite</td>
</tr>
<tr>
<td></td>
<td>Pancreas</td>
<td>Opposes leptin actions</td>
<td>Reduces metabolic rate</td>
</tr>
<tr>
<td></td>
<td>Intestine</td>
<td></td>
<td>Reduces fat catabolism</td>
</tr>
<tr>
<td>PYY</td>
<td>Enteroendocrine L cells of ileum and colon</td>
<td>Associated with IR and insulin secretion</td>
<td>Induces satiety</td>
</tr>
<tr>
<td>Leptin</td>
<td>Adipocytes</td>
<td>Inhibits NPY and activates POMC neurons</td>
<td>Anorectic</td>
</tr>
</tbody>
</table>
Effect of LAGB on Adiponectin

Effect of LAGB on Leptin

Effect of LAGB on PYY and Ghrelin

Summary for LAGB

- The effect LSG on patients’ metabolic profile is exerted by caloric restriction and changes in circulating and hepatic levels of Adiponectin and Leptin.

- LAGB does not induce any significant changes in PYY, Ghrelin, GLP-1, and GIP peptides.

- LSG is categorized as a restrictive operation, however its metabolic effect clearly extend beyond caloric restriction through changes in adipokine profiles.
Gastric sleeve resection

• The fundus and body of the stomach are excised, leaving a tube with reduced volume [1]

• Advantages: [2]
 – Good weight loss
 – No ‘dumping’ syndrome

• Disadvantages: [3]
 – Major surgery with associated risks such as staple line bleeding and leakage
 – Increased risk of gallstones

Ghrelin Levels after LSG and LAGB

Langer et al., Obesity Surgery 2005

Table 1. Demographic data of the study population

<table>
<thead>
<tr>
<th></th>
<th>Sleeve gastrectomy</th>
<th>Gastric banding</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Sex (f / m)</td>
<td>9/1</td>
<td>9/1</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>39.3±11.7</td>
<td>38.5±13.6</td>
<td>0.796 (n.s.)</td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td>133.8±16.3</td>
<td>135.5±16.3</td>
<td>0.684 (n.s.)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>48.3±5.7</td>
<td>46.7±3.5</td>
<td>0.393 (n.s.)</td>
</tr>
<tr>
<td>Super-obese</td>
<td>5 (50%)</td>
<td>1 (10%)</td>
<td></td>
</tr>
</tbody>
</table>
Metabolic Changes after LSG

Karamanakos, S; Vagenas, K; Kalfarentzos, F; Alexandrides, T

<table>
<thead>
<tr>
<th>TABLE 1. Patient Characteristics at Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>----</td>
</tr>
<tr>
<td>RYGBP</td>
</tr>
<tr>
<td>Sleeve gastrectomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE 4. Body Mass Index, % Excess Weight Loss, Ghrelin, and PYY Changes Before and 1, 3, 6, and 12 Months After Sleeve Gastrectomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre (mean ± SD)</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
</tr>
<tr>
<td>EWL%</td>
</tr>
<tr>
<td>Fasting ghrelin (pg/mL)</td>
</tr>
<tr>
<td>Fasting PYY (pg/mL)</td>
</tr>
</tbody>
</table>
Meal induced changes in ghrelin and PYY levels in 6 patients after LRYGBP (A) and 6 patients after LSG (B). Fasting (black bar) and postprandial (white bar) ghrelin values.
Summary for LSG

- The effect LSG on patients’ metabolic profile is exerted primarily by caloric restriction and ghrelin's' reduction after fundus removal.
- Meal stimulated PYY is significantly higher after LSG however gradually decreases over time, due to physiologic adaptation of the gastric remnant leading to better digestion. Therefore the long-term efficiency of LSG on appetite suppression is under question.
- LSG is categorized as a restrictive operation, however its ability to extend beyond caloric restriction through changes in gut hormone profiles raises a promise that it will play a leading role in the future of bariatric surgery.