Endoscopic Management of Strictures and Leaks

Prepared by Aurora D. Pryor, MD
Presented by Dana Portenier, MD
Duke University Medical Center
What can go wrong?

- Bleeding (2%)
- Sleeve too big
- Angulated
- Too narrow/Stricture (1%)
- Leak (0.7-5%)

What can go wrong?

• Sleeve too big
• Angulated
• Too narrow/Stricture
• Leak

Courtesy Mohammed Alkayyal, www.sages.org
All bariatric surgeons should know how to manage leaks and strictures
Sleeve Complications: Stricture

- Stricture may occur on the long staple line
 - Ischemia
 - Oversewing
 - Other Technical Issue
- Leak or bleeding may predispose to stricture.

Complications: Stricture

- Most strictures can be effectively managed with balloon dilation.
- May require a second session, but over 90% are managed with 1 or 2 dilations.
- Perforation is reported in 2% of patients in some larger series (2/94).

Complications: Stricture

- Balloon dilators of 12-18 mm have been described.
- To minimize recurrence, an 18 mm balloon is preferred.
- Procedure may be done with fluoroscopic assistance.
- Inflate the balloon and hold for 1 minute.
- Repeat if necessary.

What if Dilation Fails?

• Dapri. Laparoscopic Seromyotomy for Stricture after Sleeve.
 9 patients, 1 leak. Good success.

• Sudan. Robotically assisted stricturoplasty.

• Eubanks. 5/6 strictures success with stents
 JACS. 2006(5):935-8
Sedation of the obese

- Dosage adjustments?
 - Midazolam
 - Prolonged half life in the obese
 - Fentanyl should be dosed on lean body mass, not total body weight
 - No change in elimination half life in lean vs. obese
 - Recovery time may be increased

Casati. Journal of Clinical Anesthesia 2005
Sedation of the obese

- Obesity hypoventilation syndrome
 - Alveolar hypoventilation
 - Increased PCO2
 - Decreased PO2
- Capnography

Casati et al, Journal of Clinical Anesthesia 2005
Sleeve Complications: Leak
Sleeve Complications: Leak

- Most early uncontained leaks are operatively managed.
- Contained or delayed leaks may be managed nonoperatively in the stable patient.
- Endoscopic techniques are a useful adjunct.
- If combined with stricture, unlikely to heal.
Literature Review

• Nguyen. 3 pts with leak, all successfully treated with stenting

• Csendes operative management of leaks. Resuturing ineffective after 3 days. Drainage alone averaged 45 days to resolution

Literature Review

• Tan. 14 (10 referred) sleeve leaks
 8 treated non-operatively with drainage
 operative management included drains
 4 successfully stented
 4 stent cx (migration x 2, bleeding, deployment problem)

 1 pt required RY Esophagojejunostomy

Sleeve Complications: Leak

- Most leaks occur at / near the angle of His
- Difficult to suture tissues at site of leak.
- Sutured leaks frequently recur.
- Cannot divert to promote healing.
- Only surgical management is often necessary.
 - T-tube or foley in leak itself
 - Wide peritoneal drainage

- 22% mortality of surgically managed GI leak. (American Surgeon. 72(7):586-90; discussion 590-1, 2006 Jul.)
Indicators of Leak

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean +/- SD</th>
<th>No. of patients with (+) findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epigastric pain</td>
<td></td>
<td>11 (68.7%)</td>
</tr>
<tr>
<td>Fever > 37.5°</td>
<td>38.08±0.7 (37.6–40.0)</td>
<td>13 (81.2%)</td>
</tr>
<tr>
<td>Tachycardia >100–150/min</td>
<td>115±9.6 (100–129)</td>
<td>7 (43.7%)</td>
</tr>
<tr>
<td>Leukocytosis >10,000/mm³</td>
<td>15,775±3,148 (10,600–22,300)</td>
<td>12 (75%)</td>
</tr>
<tr>
<td>Left deviation > 4%</td>
<td>10.4±5.5 (7–29)</td>
<td>5 (31.2%)</td>
</tr>
<tr>
<td>CRP mg/Lt>11</td>
<td>268±107 (69–547)</td>
<td>16 (100%)</td>
</tr>
</tbody>
</table>
Operative options

- Widely drain
- Foley catheter in leak
- Graham patch
- Stent
RYGB Complications: Anastomotic Leak
Sleeve Complications: Leak

Use of stents:

• Removable stents have been used as an adjunct for healing fistulae.
 • Used extensively with esophageal injuries
 • Fewer studies after bariatric surgery
• Simple to deploy
• Major concern is stent migration
Stenting

• 21 patients underwent endoscopic treatment for persisting large leaks before considering redo surgery.
 • 8 RYGB
 • 12 sleeve gastrectomy, 8 also with DS
 • 1 BPD
 • 15 GC, 2 DC, 3 GP, GB Fistulas
 • Partially covered self-expanding metal stents (SEMSs) were used, followed by additional endoscopic procedures if the SEMS failed.
 • SEMSs were removed by traction alone or by insertion of a self-expanding plastic stent (SEPS) followed by extraction of both stents together.
 • SEMS insertion led to 62% (13/21) primary closures. 8/8 RYGB
 • Complementary endoscopic treatment led to 4 secondary closures.

Newer Stent recommendations

• May feed early

• Keep at least 2 weeks

• Major complication is migration
 • Nested stents may help
 • Usually caught by pylorus
Sleeve Complications: Leak

Use of endoscopically injected fibrin glue:

- Easy deployment, low risk procedure.

Stenting versus Fibrin Glue?

• Both are straightforward and often successful

• Stenting requires a follow-up procedure for stent removal.

• Glue may be successful with only one endoscopic procedure

• Limited published cases on the use of glue.

• More data is needed to compare these modalities.
Conclusions

• Many complications from sleeve gastrectomy may be treated endoscopically.

• Endoscopic therapy may minimize morbidity when compared to surgery.

• Considerations need to be taken with conscious sedation in the morbidly obese.

• May require more than one treatment.

• Outcomes are generally good with low risk.