Overview

• Background
• Anatomy
• Pathology
• Radiological Workup
• Selected Cases
Nonvariceal GI Bleeding

• **Upper GI vs. Lower GI bleeding**
 – **UGI bleeding**
 • 5-8x more common than LGIB (gastritis, ulcers)
 • endoscopy initial diagnostic evaluation in stable pts
 – can identify bleeding source 95% of time
 – Tx electrocautery, sclerotherapy, banding
 • angiography reserved when endoscopy impossible or inconclusive; unstable pts
Acute Lower GI Bleeding

- 300,000 admissions/year in US
- 80% colonic in origin
- endoscopy often difficult/impossible
- radiology provides important role in management of acute LGIB for diagnosis and treatment
Clinical Information for GI bleeding

- what orifice blood is coming from
- hemodynamic stability
- resuscitative measures already taken
- NGT, Foley in place
- endoscopy
- coagulopathies/ corrective measures
- hx GI surgery
- treatment plan following localization
Vascular Anatomy

• Celiac Axis
 – liver, spleen, stomach, duodenum
 – arises at T12-L1 interspace
 – 1st branch is left gastric artery
 • supplies gastric fundus and GE junction, anastomoses with right and short gastrics
 – 2nd branch is splenic artery
 – 3rd branch is common hepatic artery
 – dorsal pancreatic artery may arise from celiac, hepatic, or splenic arteries in 10%
 – inferior phrenic arteries in proximity
Vascular anatomy con’t

• Celiac artery con’t
 – conventional branching in 70%
 – any of celiac branches can arise directly from aorta, or with exception of the left
gastric from the SMA
Anatomy

• **Celiac Axis**

- **left gastric**
- **right gastroepiploic**
- **GDA**
- **common hepatic**
- **splenic**
Vascular Anatomy con’t

• **Superior Mesenteric Artery**
 - duodenum, small bowel, colon to splenic flexure
 - arises at L1 1-20 mm below celiac
 - 1st branch usually inferior pancreaticoduodenal artery
 - 2nd branch middle colic
 - jejunal and ileal branches
 - right colic
 - ileocolic
 - appendiceal (ileocolic or distal SMA)
Anatomy

- Superior Mesenteric Artery
 - jejunal branches
 - middle colic
 - right colic
 - ileal branches
 - ileocolic
Vascular Anatomy con’t

• **Inferior Mesenteric Artery**
 – *left* and sigmoid colon, proximal rectum
 – arises left side of distal AA at L3
 – *1st* branch is left colic
 – sigmoid branches
 – superior rectal is terminal branch

• **Internal Iliac Arteries**
 – *middle* and *inferior rectal arteries arise off anterior division*
Anatomy

- **Inferior Mesenteric Artery**

 - left colic
 - sigmoid branches
 - superior rectal
Vascular Collateral Pathways

- **Celiac to SMA**
 - Arc of Buehler
 - pancreaticoduodenal arcades
- **SMA to IMA**
 - middle colic to left colic
 - Arc of Riolan
 - marginal artery of Drummond
- **IMA to Internal Iliac**
 - via superior hemorrhoidal
- **Rectal arcades**
Vascular Anatomy con’t

- **Stomach**
 - *fundus* primarily via *left gastric*
 - *short and posterior* gastrics
 - *body* by *gastroepiploic artery* along *greater curvature*
 - *lesser curvature* by *left and right* gastrics
 - *antrum and pylorus* supplied by *right gastroepiploic*, *right gastric*, and *pancreaticoduodenal arteries*
Vascular Anatomy con’t

• Duodenum
 – 1st and 2nd portions from GDA and its branch the superior pancreaticoduodenal artery
 – 3rd and 4th portions from SMA and its branch the inferior pancreaticoduodenal artery
Etiologies of Acute UGIB

- gastritis
- PUD
- Gastroesophageal varices
- Mallory-Weiss tear
- iatrogenic
- AVM / angiodysplasia
- tumor
- aneurysm / PSA
• What is a Dieulafoy lesion?

a) iatrogenic injury
b) congenital malformation
c) acquired / degenerative
d) related to severe burns
Dieulafoy Lesion

- Rare (<5%) cause of gastric bleeding
- Congenital
- Single large tortuous arteriole in submucosa, around 10x normal diameter
- 95% gastric fundus; can occur anywhere in GI tract
- Hemorrhage from erosion in overlying mucosa likely from pulsation
- Treatment with endoscopy

http://www.gcgeorge.net/2008/07/18/
Etiologies of Acute LGIB

- **Large Bowel Origin**
 - diverticulosis
 - angiodysplasia / AVM
 - colon Ca
 - polyps
 - IBD, other colitides
 - rectal disease
 - vasculitides
 - aortoenteric fistula
Etiologies of Acute LGIB

• Small Bowel Origin
 – AVM
 – leiomyoma
 – ulcers
 – small bowel varices
 – IBD
 – diverticulosis
 – tumors
 – Meckel’s diverticulum
Potential ABO Angiography Question

- Angiography performed in a patient with chronic intermittent lower GI bleed demonstrates the following:
 - Angiodysplasia

Hastings, G. S. Radiographics 2000;20:1160-1168
Nuclear Scintigraphy

- stable patient with intermittent hemorrhage, bleeding scan initially performed prior to angiography
- both 99mTc RBC and 99mTc colloid used
- can detect bleeding rates as low as 0.1 ml/min
- most centers will proceed to angio if bleeding scan positive
- scans not usually helpful in UGIB
Nuclear Scintigraphy

- most LGIB intermittent, thus chances of detecting site of hemorrhage enhanced by radiopharmaceutical with long T1/2
- scans best for acute LGIB; chronic low volume blood loss rarely benefit
- agent of choice 99mTc RBC
 - sensitivity upwards of 90%
• **In Vitro Procedure**
 - 1-3 ml anticoagulated blood added to vial with stannous chloride
 - *sodium hypochlorite* added to oxidize extracellular *tin*
 - *mixture of citric acid, sodium citrate, and dextrose* added
 - then 99mTc pertechnetate introduced; after 20 minutes cells re-injected
 - *labelling efficiency* > 95%
Imaging

- *initial rapid perfusion sequence* 2-3 second abdominal and pelvic images over 30-60 seconds
- *static images* then obtained at 5 minute intervals for 60 minutes, thereafter images taken at 15-60 minute intervals
- *or continuous dynamic computer acquisition*, results viewed in cine format
- *6, 12, 24 hour delayed images* obtainable
^{99m}Tc RBC scintigraphy

- **Imaging con’t**
 - free technetium not bound to RBC
 - excreted by kidneys and gastric mucosa
 - and passes into bladder, small bowel, colon
99m Tc RBC Scintigraphy

- **Positive Scan Findings**
 - *initial focus of activity, which must increase and change position over time*
 - *if activity remains in same location, consider static vascular abnormality*
 - *blood is irritant to intestine, movement of tracer activity often rapid and bidirectional*
 - *earlier in study that bleeding is seen, more accurate is degree of localization*
Positive 99mTc RBC Scan

http://brighamrad.harvard.edu/Cases/bwh/hcache/126/full.html
\textit{99m Tc Sulfur Colloid}

- **Uncommonly used**
 - inexpensive, easy prep, readily available
- **Colloid clears rapidly from intravascular space via RES**
 - good contrast between background and extravasated isotope
 - disadvantage as bleeding must be actively occurring during short time colloid is intravascular (\(t \frac{1}{2} \) 2.5 to 3.5 minutes)
 - liver and spleen activity can obscure flexures
99mTc Bleeding Scans

- occasional confusion of bladder activity within rectosigmoid bleed can be resolved with postvoid or lateral pelvic images
- interfering genital activity can also be confused for bleeding site; oblique or lateral views helpful
- important to watch for free technetium or pertechnetate artifacts
$^{99m}\text{Tc RBC: Free Pertechnetate?}$

http://gamma.wustl.edu/gi007te177.html
Nuclear Medicine Meckel’s Scan

• Meckel’s Diverticulum
 – congenital diverticulum; vestigial remnant of omphalomesenteric (vitelline) duct
 – 2% of population
 – 96% lesions will remain asymptomatic
 • complications include hemorrhage, obstruction, intussusception, volvulus
 – most common presentation is with painless rectal bleeding
 – virtually all cases of bleeding Meckel’s involve ectopic gastric mucosa +/- ulcer
Meckel’s Scan

- Imaging based on visualization of ectopic gastric mucosa via intravenous ^{99m}Tc pertechnetate
- Dose administered, sequential anterior abdominopelvic images obtained for 45-60 minutes
- Positive scan shows focal increased activity in RLQ or midabdomen
Meckel’s Scan

- sensitivity and specificity around 90%
- sensitivity can be increased by
 - cimetidine to block release of pertechnetate from gastric mucosa
 - pentagastrin to enhance mucosal uptake of pertechnetate
 - glucagon to decrease small bowel activity
Positive 99mTc Pertechnetate Scan

http://jnm.snrmjournals.org/cgi/content-nw/full/49/5/776/FIG4
Mesenteric Angiography

- positive in only around 50% of cases
- should begin with selective injection of most likely source vessel supplying site of bleeding
 - celiac for upper GI source
 - SMA for small bowel and right colon
 - IMA for sigmoid and rectum
Mesenteric Angiography

• bleeding not identified on first injection, next most likely artery should be selected

• celiac injection should be included for LGIB when SMA or IMA injections are negative as middle colic artery is replaced to dorsal pancreatic artery in 1-2% of patients

• occasional internal iliac artery injections needed with occluded IMA
Mesenteric Angiography

- filming should be rapid 3-6 frames per second during arterial phase, then slower during portal venous phase
- visualization of portal venous phase mandatory as bleeding can be due to varices or venous thrombosis
- IV glucagon can help decrease artifact from bowel gas / peristalsis
Mesenteric Angiography

- **Positive Angiographic findings**
 - extravasation of contrast into bowel lumen
 - “pseudovein sign” of contrast within gastric rugae
 - extravasation should appear during arterial phase, persist during venous phase, and change over time
 - additional signs of vascular abnormalities include caliber changes, tumor vascularity, aneurysms / PSA, AV shunting etc.
Mesenteric Angiography

- **Digital images should be inspected in both subtracted and unsubtracted modes**

- **False positive exams**
 - barium in pre-existing diverticula, bowel gas, densely enhancing veins, hyperemic bowel mucosa, adrenal blush

- **False negative exams**
 - injection of inadequate volumes of contrast, failure to include all vascular bed in FOV, wrong artery selected
Endovascular Intervention

- **Vasopressin Infusion (historical)**
 - Pituitary hormone causing smooth muscle constriction and water retention
 - Could control bleeding when injected into proximal SMA, IMA
 - Best for diffuse mucosal hemorrhage or bleeding from small caliber arteries
 - Usually started with 0.2 U/min, increased up to 0.4 U/min; once bleeding stopped, continuous infusion, ICU monitoring, taper 24-48 hrs
 - Complications including arrhythmias, coronary and digital ischemia
Endovascular Intervention

• Transcatheter Embolization
 – now used almost exclusively due to rapid and definitive results
 – basic objective is to decrease arterial pressure and flow to point that hemostasis can occur, without creating symptomatic ischemia
 – steel or platinum microcoils, large particles, gelfoam pledgets
Common Embolic Agents

Boston Scientific VortX® coil

Boston Scientific Contour® PVA particles

Transcatheter Embolization

- General rule is identification of bleeding source prior to embolization
 - Exceptions
 - empiric left gastric artery embolization in patients with endoscopic evidence of fundal or GE junction lesions
 - empiric GDA embolization in patients with endoscopic evidence of duodenal lesions
 - Bowel should only be embolized superselectively due to risk of ischemia
 - ideally just proximal to terminal arcade or immediately adjacent to mucosal surface
Transcatheter Embolization

- technically successful in >90% of cases; rebleeding occurs around 20%
- pts should be evaluated for development of ischemia
 - delayed ischemic colonic strictures have been reported
- may pass melanotic stools long after bleeding has stopped
Transcatheter Embolization

- **Causes of failed embolization**
 - failure to recognize collateral supply
 - incomplete occlusion
 - failure to recognize spasm
 - failure to recognize/correct coagulopathy

- **Complications**
 - non target embolization
 - ischemia
 - aneurysm rupture
Provocative Angiography

• Around 5% of patients will multiple admissions / transfusions for LGIB, however repeat radiologic and endoscopic exams are negative

• Adding pharmacologic agents (anticoagulants, vasodilators, fibrinolytics) during standard angiographic examinations to induce a prohemorrhagic state
Provocative Angiography

- 1st described by Rosch in 1982
 - 3 pts given 50 mg tolazoline, 10,000 U heparin, and combination of 50 mg tolazoline with 60,000 U streptokinase
 - all three pts had successful provocation
 - 1st large series by Kovat in 1987
 - increase in diagnostic yield for demonstration of extravasation at angio from 32% to 65% in patients who received heparin +/- tolazoline and streptokinase and who had bled in previous 12 hrs
Provocative Angiography

- Duke study in 2001 by Ryan et al
 - involved 17 provocative angiograms in 16 patients using a protocol with tolazoline, heparin, and tPA
 - all pts had previous negative workups
 - identified site of bleeding in 37.5% of patients, and found 2 additional vascular abnormalities
 - no procedural complications reported
Provocative Angiography

• Various studies have reported a success rate at provoking hemorrhage of between 29-80%
 – Reasons for variable success
 • lack of standardized regimen
 • different combinations of drugs/dosing
 • different duration in time from active bleeding
 • referral patterns
 • operator experience
Provocative Angiography

• Contraindications
 – similar to peripheral thrombolysis
 • Absolute
 – TIA within 2 months, CVA within 6 months
 – intracranial neoplasm
 – craniotomy within 3 months
 – mobile left heart thrombus
 • Relative
 – recent major surgery, trauma, CPR
 – uncontrolled HTN
 – endocarditis
 – pregnancy and postpartum period
 – severe cerebrovascular disease
Provocative Angiography

• **Future**
 – *need for large scale study*
 – *optimal protocol has not yet been established*
Case #1

- 73 year old female on chronic NSAIDS with 6-8 day history of nausea, black emesis, melanotic stools found down at home and brought to ED
 - BP 80/40, Hct 23, NG lavage +
 - endoscopy with large clot in duodenal bulb and 2nd portion of duodenum
Case #1
Case #2

- 46 year old male presented to ED with nausea and syncopal episode.
 - vitals stable, found to have Hgb 5.7, Hct 18
 - admitted to MICU, transfused
 - large volume hematemesis
 - endoscopy with large duodenal ulcer in bulb with adherent clot 4-5 cm in diameter
Case #2
• **Sent back to MICU, Hct stabilized over next several days**
 – 5 days later, presented with repeat episode of large volume *hematemesis*
Case #2 con’t
Case #3

• 67 year old male previously healthy with acute onset BRBPR
 – syncopal event at urgent care center
 – transferred to regional medical center, initial NM RBC scan negative
 – second RBC scan positive in ascending colon; angio negative
 – transferred to Duke for elective colonoscopy
 – over weekend, repeat RBC scan performed
Case #3 con’t
Case #3 con’t

- back to MICU; continued to have episodic BRBPR
- colonoscopy demonstrated extensive diverticulosis with multiple polyps in cecum and transverse colon
- surgery consulted; decision made to proceed with provocative arteriogram
Case #3 con’t
Case #3 con’t
References

- Ryan JM et al. “Nonlocalized lower gastrointestinal bleeding: provocative bleeding studies with intraarterial tPA, heparin, and tolazoline. JVIR. 2001 Nov; 12 (11), 1273-7