Splanchnic Artery Aneurysms: Diagnosis, Imaging, and Management

David R. Sopko M.D.
Fellow, Vascular & Interventional Radiology
Duke University Medical Center
Durham, NC
Objectives

• Appreciate Incidence, Risk Factors, and Variations in Presentation
• Imaging Studies
 – Cross-Sectional
 – Angiography
• Outline the Management Strategies
 – Surgical
 – Non-surgical
 – Emerging
• Case Presentation(s)
• Questions/Discussion
FIGURE 1. Distribution of splanchnic artery aneurysms (AA). Prevalence (percentage of all splanchnic artery aneurysms) and sites of splanchnic artery aneurysms are indicated.
Visceral Artery Aneurysms (VAAs)

- Incidence: 0.1-10%
- Most are asymptomatic
- 22% present as emergencies
 - GIB
 - Rupture
- Mortality after rupture
 - Variable & dependent on location
Splenic

- 60% of VAAs
- Most are Asymptomatic
 - Incidental findings in <1% of angiographic studies
 - Multiple in 20%
- Males 4x>Females
- Risk Factors
 - FMD
 - Portal HTN
 - Pregnancy → 40% with >6 gestations (Mean 4.5)
 - Atherosclerosis
 - Liver Transplant
- Etiology
 - Trauma
 - Pancreatitis
 - Collagen Vascular Disease
 - NF
- 72% True aneurysms
 - Saccular>Fusiform
 - Occur at bifurcations
- Risk for rupture = 2%
- Mortality
 - Maternal = 70%
 - Fetal = 75-95%
 - Surgical = 40%
Splenic

• Presentation
 – Asymptomatic
 – Abdominal pain
 • To shoulder
 – “Double Rupture”
 • Lesser sac with progression to the Greater sac

• Recommendations for treatment
 – >2cm
 – Enlarging
 – Symptomatic
 – Child-bearing age
Splenic

• Treatment
 – Proximal or Mid
 • Ligation (surgical or endovascular)
 • Stent-graft
 • Coiling
 – Distal/Hilus
 • Surgical ligation with splenectomy
Hepatic

• 20% of VAAs
• 6th decade
• Males 2x> Females
• Etiology
 – Atherosclerosis (1/3)
 – Medial degeneration (24%)
 – Trauma (22%)
 – Mycotic
 • Txplant, IVDU, endocarditis
 – PAN

• Usually Solitary
 – 80% extrahepatic
 – 20% intrahepatic
• 50% False
 – True 4x>False when extrahepatic (CHA)
• Fusiform @ <2cm; Saccular @ >2cm
• Risk for rupture = 20-30%
 – Mortality = 35%
Hepatic

- **Presentation**
 - Majority asymptomatic
 - RUQ pain + obstructive jaundice + hemobilia

- **Treatments**
 - Prox to GDA = aneurysmectomy/ligation (i.e. in CHA)
 - Distal to GDA = revascularization (graft/EEA)
 - Intrahepatic = surgery with possible hepatectomy OR endovascular (coils/particles)
Celiac

- 4% of all VAAs
- No sex predilection
- Etiology
 - Medial degeneration
 - Atherosclerosis
 - Trauma
 - TB/Syphilis
- Associations
 - 18-67% with peripheral arterial aneurysms
- Risk of rupture = 13%
 - Mortality = 50%
- Treatment
 - Aneurysmectomy with vascular reconstruction (bypass or reimplantation)
 - Coils, stent-grafts
Superior Mesenteric

- 5.5% of VAAs
- 90% symptomatic
 - Thromboembolic intestinal angina
- No sex predilection
- Etiology
 - Infection (>50%)
 - Medial degeneration
 - Atherosclerosis
 - Trauma

- 50% present with rupture
 - 35-50% mortality
- Treatment
 - Ligation with EEA, bypass, or reimplantation
 - Stent-graft
PDA/GDA

- PDA 2%; GDA 1.5% of VAAs
- Males 4x> Females
- Etiology
 - Pancreatitis
 - 60% of GDA
 - 30% of PDA
 - Trauma
 - “Friend”-ogenic
 - Iatrogenic
- Associations
 - Celiac artery stenosis
- Risk of rupture
 - Inflammatory = 75%
 - Non-inflammatory = 50%
 - Mortality = 21-50%
- Presentation
 - Hemobilia
 - Hemosuccus pancreaticus
 - “Sentinel bleed” from drain s/p Whipple.
PDA/GDA

• **Treatment**
 – Ligation proximal and distal
 – Embolization
 • Less durable
 – Stent-graft
Imaging

- **US**
 - Screening exam
 - Hepatic transplant
 - Splenic artery
 - Operator dependent
 - Interpretation dependent
 - Body habitus dependent
 - Most often followed by CT or MRI
 - Confirmation
 - Anatomic delineation
 - Findings
 - Vessel wall thickening
 - Aliasing
 - “Yin-Yang” ➔ swirling

Fig. 1. Celiac artery aneurysm – color mode examination by visualizing the turbulences inside the vascular dilatation (by courtesy N. Rednic, CFR Universitary Hospital Cluj Napoca).
MRI/MRA

- MRI
 - Multiplanar capability
 - Contrast enhanced modality of choice
 - ??NSF??
 - Limited by devices
 - Pacers, etc.
 - Susceptibility artifact
 - Motion artifact
 - Not useful in the acutely ill pt
 - Observation patients likely the best candidates.
 - Lesser resolution than DSA and CTA both
CT Angiography

- CTA
 - Sub-mm data acquisition
 - Isotropic data sets
 - Radiation
 - Contrast mandatory

- Sample Protocol
 - Single breath hold
 - Dome of diaphragm to Ischial tuberosities
 - 120cc contrast @3-5cc/s
 - Arterial = 30s; Venous = 60-80s
 - Collimation = 0.6mm
 - 0.5mm reconstruction intervals
 - MIP and 3D-VR
 - Intervention/surgical planning

- Vascular evaluation
 - Sagittal plane for origins
 - Coronal and (multiple) Oblique Coronal for course of vessels.
Pulli et al. 2008 (Italy)

- Retrospective (N = 55)
- Pro-operative
 - demographics
 - risk factors
 - comorbidities
 - anatomy
- Work-up = CT and/or DSA
- Surgery
 - approach
 - type of reconstruction
 - associated procedures
- Post-operative
 - outcome
 - complications
 - imaging

- Diagnosis
 - Incidental = 94.6%
 - Palpable Mass = 1.8%
 - Acute Abdomen or Hypotension or Decrease H&H = 3.6%

Results

Table. Intraoperative data and early results

<table>
<thead>
<tr>
<th>Site</th>
<th>No. of lesions</th>
<th>Kind of intervention</th>
<th>Perioperative mortality</th>
<th>Perioperative major complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Splenic artery</td>
<td>30</td>
<td>Resection with end-to-end anastomosis (22)</td>
<td>1 (3.3%)</td>
<td>2 (6.6%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Splenectomy and ligature (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aneurysmorrhaphy (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Partial resection with arterial ligature (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Endovascular exclusion (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renal artery</td>
<td>9</td>
<td>Aortorenal bypass (4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Resection with end-to-end anastomosis (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Resection and patch closure (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aneurysmorrhaphy (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatic artery</td>
<td>7</td>
<td>Aneurysmectomy and primary closure (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aneurysmectomy and arterial ligation (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aneurysmectomy and patch closure (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aneurysmorrhaphy (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Celiac trunk and mesenteric arteries</td>
<td>6</td>
<td>Resection and tube graft (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aneurysmectomy and primary closure (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aneurysmectomy and patch closure (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peripancreatic arteries</td>
<td>5</td>
<td>Aneurysmectomy with end-to-end anastomosis (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastric and bowel arteries</td>
<td>2</td>
<td>Aneurysmectomy and patch closure (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aneurysmectomy and primary closure (1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Due to distal location

All with concurrent AAA

Involved Pancreas and Giant (>6cm)

Pancreatitis and Death

Results

Overall 30-day mortality = 1.8%
Overall 30-day morbidity = 5.4%

Follow-up
- 6 deaths (no aneurysm related)
- mean f/u of 82 months

Fig 5. Long-term survival (Kaplan-Meier curve with number of patients at risk and SE values).

Fig 6. Long-term, aneurysm-related, complication-free survival (Kaplan-Meier curve with number of patients at risk and SE values).

Recommendations

• Renal Artery
 – Saccular & prox = aneurysmectomy w/ patch OR end-to-end anastamosis (EEA)
 – Saccular & mid/distal = prosthetic bypass graft
• Splenic Artery
 – Old school = splenectomy
 – Saccular prox/mid = aneurysmectomy with EEA, OR splenic artery ligation
 – Hilar/parenchymal = splenectomy not avoidable
• Hepatic Artery
 – Proximal to GDA = ligation
 – Distal to GDA = bypass or aneurysmectomy with EEA
 – Intraparenchymal = may require resection
• Celiac/Mesenteric
 – Aneurysmectomy with patch or EEA
 – Bypass graft
 – Coils or stent-grafts
• GDA/PDA
 – Ligation
 – Aneurysmectomy with EEA
• Stent-grafts = specifically in cases of adjacent organ involvement

Ikeda et al. (Japan)

- Retrospective: N = 22 (4/02 – 5/07)
 - True aneurysms only (PSA excluded)
 - Unruptured only
- Imaging = 16-MDCT @ 3cc/s; 1.5mm collimation

Table II. Indication of transcatheter coil embolization for visceral artery aneurysms

<table>
<thead>
<tr>
<th>Site of aneurysm</th>
<th>Factors for treatment indication</th>
<th>Treatment is indicated if</th>
</tr>
</thead>
<tbody>
<tr>
<td>Splenic artery aneurysm</td>
<td>(1) More than 3 cm in size</td>
<td>Present three factors from (1) to (3) or present (4) and two factors from (1) to (3)</td>
</tr>
<tr>
<td></td>
<td>(2) No calcification in an aneurysmal wall</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) No intracavitary thrombus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) With chronic liver disease</td>
<td></td>
</tr>
<tr>
<td>Renal artery aneurysm</td>
<td>(1) More than 1.5 cm in size</td>
<td>Present three factors from (1) to (3) or present (4) and two factors from (1) to (3)</td>
</tr>
<tr>
<td></td>
<td>(2) No calcification in an aneurysmal wall</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) No intracavitary thrombus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) With hypertension, steroid treatment, or pregnancy</td>
<td></td>
</tr>
<tr>
<td>Proper hepatic artery aneurysm</td>
<td>(1) More than 2 cm in size</td>
<td>Present all three factors</td>
</tr>
<tr>
<td></td>
<td>(2) No calcification in an aneurysmal wall</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) No intracavitary thrombus</td>
<td></td>
</tr>
<tr>
<td>Pancreaticoduodenal arcade aneurysm</td>
<td>Any pancreaticoduodenal arcade aneurysms require treatments</td>
<td></td>
</tr>
</tbody>
</table>

Ikeda et al.

- **Angio**
 - Confirmed collateral flow with occlusion balloon
 - Coils = 3D GDC and IDC

- **Technical Success**
 - No flow post-embolization AND
 - No flow @ 1wk MRA AND
 - Patent native vessel flow

- **Complications**
 - End-organ infarct regardless of presence/absence of symptoms
Results

- Technical Success = 72.7%
- Complications
 (all due to coil migration)
 - Renal infarct (n=2)
 - Splenic infarct (n=1)
- Recommendations
 - Saccular = packing to preserve native flow
 - Fusiform = proximal and distal coils

Stent-Grafts: Rossi et al. (Italy)

- Rossi et al. (Italy)
 - N=4 (3 splenic; 1 hepatic)
 - Work-up
 - MDCT with MPR & 3D-VR
 - Post-procedure
 - ASA 300mg PO QD

- Results
 - All excluded
 - Patent and excluded to 24 mos
 - Cx: splenic infarct (n=1)
 - 1 death (pancreatitis/sepsis)

- Findings
 - Predictors of rupture
 - No calcification, young age, and no beta-blockers

- Notes
 - Need stable carrier system
 - Flexible stent-graft
 - Precision of deployment

Rossi et al. Cardiovasc Intervent Radiol 2008;31:36-42
Endovascular Strategies: Tulsysan et al. (CCF)

• Retrospective: N=90
 – Endovascular (48) & Operative (42)
 • Excluded those with associated AAA
 – True and Pseudo-aneurysm
 • 30% and 89% symptomatic respectively
 – Imaging: CT, MR, and/or US
 – Embolization techniques
 • Coils (81.3%) + n-BCA (4.2%) + both (15%)
 • Stents → excluding coil pack (n=2); dissection (n=1)
 • Technical success
 – Deployed, excluded, cessation of bleed, flow maintained
 – Imaging Artifacts on f/u
 • CT/MR
 – I = no scatter
 – II = moderate scatter beyond intervention site
 – III = severe
Results

- **Endovascular**
 - 98% technical success
 - 8.3% 30 day mortality
 - 40% end-organ infarct (n=6)
 - No infectious or hematological sequelae

Table II. Distribution of elective and urgent interventions for visceral artery aneurysms and pseudoaneurysms with associated perioperative results

<table>
<thead>
<tr>
<th>Arterial bed</th>
<th>Urgent vs elective</th>
<th>No.</th>
<th>Mean size (mm)</th>
<th>Technical success (%)</th>
<th>30-day mortality (%)</th>
<th>End-organ ischemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Splenic</td>
<td>Urgent</td>
<td>3</td>
<td>63</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>17</td>
<td>28</td>
<td>100</td>
<td>0</td>
<td>5 (29)</td>
</tr>
<tr>
<td>Celiac axis branches*</td>
<td>Urgent</td>
<td>9</td>
<td>22</td>
<td>100</td>
<td>2 (22)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>5</td>
<td>32</td>
<td>80</td>
<td>0</td>
<td>1 (20)</td>
</tr>
<tr>
<td>SMA</td>
<td>Urgent</td>
<td>1</td>
<td>20</td>
<td>100</td>
<td>1 (100)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>1</td>
<td>22</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hepatic</td>
<td>Urgent</td>
<td>9</td>
<td>16</td>
<td>100</td>
<td>1 (11)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>3</td>
<td>53</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*Except splenic/hepatic.

Tulsyan et al. (J Vasc Surg 2007;45:276-83)
• Imaging Artifact
 – CT
 • Grade I (n=5/33)
 • Grade II (n=11/33)
 • Grade III (n=17/33)
 – MR
 • Grade I (n=1)
 • Grade II (n=2)

Tulsyan et al. (J Vasc Surg 2007;45:276-83)
Endovascular Therapy: The NYU Experience (Saltzberg et al.)

- **Study Design**
 - Retrospective (1990-2003): N = 65
 - Observation
 - Endovascular
 - Surgical
 - Work-up
 - CT or MRA
 - DSA @ time of therapy
 - Outcomes
 - Technical success
 - M&M
- **Procedures**
 - Surg: 2 aneurysmectomy + 6 ligations
 - Endo: 15 coils + 3 stent-grafts

Results
- 16.9% symptomatic
 - 36.4% of these ruptured
- Mean diameter
 - Obs = 2.01cm
 - Surg = 5.52cm
 - Endo = 3.17cm
- Outcomes
 - Technical Success
 - 94% endovascular
 - Mortality
 - Surgery = 1 death
 Old and Ruptured
 - Endovascular = 0 deaths
 - Obs = no known deaths or ruptures
 - Complications
 - Splenic infarct (n=4)
• Recommendations
 – Size guidelines as previously described
 – Splenic lesions
 • Distal = surgery
 • All others = endovascular
 – Follow-up
 • Stent-graft = 1 & 6 mos, then annually
 • Coils = 6mos, then annually
Surgery v. Endovascular (Sachdev et al. NYC)

• Premise
 – Surgery remains gold standard therapy
 – Long-term durability and secondary procedure rate are not known for endovascular procedure

• Study Design
 • True and PSA included
 • Endovascular (n=35); Surgical (n=24)

Table III. Location and classification of aneurysms treated by either endovascular or open techniques

<table>
<thead>
<tr>
<th>Aneurysm*</th>
<th>Endovascular (n = 35)</th>
<th>Open (n = 24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Splenic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>True</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>Pseudo</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Hepatic*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>True</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Pseudo</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>Celiac trunk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>True</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Pseudo</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gastroduodenal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>True</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Pseudo</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Superior mesenteric artery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>True</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pseudo</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Pancreaticoduodenal artery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>True</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Pseudo</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

*The P values for these aneurysms were not significant except for hepatic (P = .002).
Head to Head

• Results
 – Mean size
 • Endovascular = 3.28cm
 • Surgical = 4.35cm
 – No difference in presentation
 – Length of stay
 • Endovascular = 2.4d +/- 1.6
 • Surgical = 6.6d +/- 4.7
 – No difference in mortality, complications, or re-intervention rate
 – PSA more likely to treat endovascular
 – Primary treatment success = 89% in endovascular group
 • All 2nd attempts were successfully embolized

Table V. Complications, reinterventions, and 30-day mortality after open or endovascular repair of aneurysms involving branches of the celiac and superior mesenteric arteries*

<table>
<thead>
<tr>
<th></th>
<th>Endovascular (n = 35)</th>
<th>Open (n = 24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complications</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Reinterventions</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Deaths ≤30 days</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

*The P values for these data are not significant.

Sachdev et al. (J Vasc Surg 2006;44:718-24)
Conclusions
- Hemodynamic status does NOT preclude endovascular treatment
- Endovascular treatment likely results in shorter admission
- Surgery may not be needed in the setting of endovascular failures
Summary

• Visceral artery aneurysms are likely more common than the current literature suggests
• Given the vague presentation, diagnosis may be delayed and mortality rates remain high
• US is a good screening tool, but CT/MR are the workhorse of diagnosis, monitoring, and procedural planning
• Treatment in asymptomatic patients is driven by frequent imaging evaluation.
• Surgery remains the gold standard in definitive treatment, but established and emerging endovascular techniques are now considered part of 1st line therapy, even in the unstable patient.
Case #1

• History
 – 37 y.o. AAF with 10 year history of intermittent abdominal pain. Pain is variable, including diffuse to “band-like” across the upper abdomen. Associated nausea at times is relieved by eructation.
• **Splenomesenteric Trunk**
 – <1% of all patients
 – Aneurysms very rare
 – Up to date, all but 2 (known) have been treated surgically (1st in 1966)

#1 = **Splenic Artery Aneurysm of the Anomalous Splenomesenteric Trunk: Successful Treatment by Transcatheter Embolization Using Detachable Coils**

Motohiro Sato,1,2 Izumi Anno,3 Masayuki Yamaguchi,3 Hiroyuki Iida,4 Kazuo Ori4

1Department of Radiology, Ibaraki Prefectural Central Hospital, 6528 Koiwuchi, Tomobe-machi, Nishiihara-ku, Ibaraki 309-1793, Japan
2Department of Radiology, Tsukuba Gakuen Hospital, 2573-1 Kamiyokoba, Tsukuba, Ibaraki 305-0854, Japan
3Department of Radiology, Institute of Clinical Medicine University of Tsukuba, 1-1-1 Tennozai, Tsukuba-shi, Ibaraki 305-8576, Japan
4Department of Surgery, Tsukuba Gakuen Hospital, 2573-1 Kamiyokoba, Tsukuba-shi, Ibaraki 305-0854, Japan

#2 = Case #1 above
References

Fin